Statistical methods for the detection of continuous gravitational waves

M.ALESSANDRA PAPA

MPI FOR GRAVITATIONAL PHYSICS, HANNOVER, GERMANY
AND
U. WISCONSIN, MILWAUKEE, USA

ICERM workshop on "Statistical Methods for the Detection, Classification and Inference of Relativistic Objects", Nov 16-20 2020

Deformation of a neutron star

ellipticity
$$\varepsilon = \frac{|I_{xx} - I_{yy}|}{|I_{zz}|}$$

$$f_{gw} = 2f_{rot}$$

$$h_0 = \frac{4\pi^2 G}{c^4} \frac{I_{zz} \varepsilon f_{gw}^2}{D} = 3 \times 10^{-25}$$

for:

$$f_{gw} = 1 kHz$$

$$\varepsilon$$
=10⁻⁶

real value of ε ? Unknown.

possible values: $10^{-12} - 10^{-5}$

Masses in the Stellar Graveyard

in Solar Masses

LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Continuous 160 80 gnals a least weaker

Observed signal • frequency-modulated • amplitude-modulated

Sun

days

Pulsar

nearly monochromatic signal at source

The signal-waveform parameters

 h₀ amplitude (distance, ellipticity)

 freq, freq derivatives, initial phase

geometrical coupling factors:

- OL
- οψ

Coherent detection: frequency-domain methods

- "Correct" data to turn signal into a sinusoid
 - Frequency demodulation
 - Amplitude weighting according to antenna-sensitivity pattern
 - Inverse noise-weighting
- Take IFFTI²

F-statistic [1,2], 5-vector method [3], loosely coherent methods
 [4]

Line-robust statistic

- F-statistic is the log-likelihood against Gaussian noise hypothesis, analytically maximized over cos ι , ψ and ϕ_0 . Combines data from multiple detectors.
- But noise is not Gaussian, so:

Standard statistic

New statistic is an odds ratio

$$F = \frac{P(H_s|x)}{P(H_G|x)} \longrightarrow O_{SGL} = \frac{P(H_S|x)}{P(H_{GL}|x)}$$

- H_S is the signal + Gaussian-noise hypothesis
- H_{GL} is an expanded noise hypothesis : Gaussian noise *or* line-noise

Performance in different noise conditions

Real detector data (noise): L1 in red, H1 in blue

Detection probability for injected signals of different amplitudes in that noise.

Coherent detection: time-domain methods

- Two stages
 - Frequency de-modulation + heterodyning and low-pass filtering (band pass and down-sample)
 - Parameter estimation, construction posterior
 - Set upper limits
 - Model selection
- Mostly used for searches for emission from known pulsars

GW detectors' noise

Bayesian

 Posterior probability of a given signal s, given the data {x} :

$$p(s \mid \{x\}) \propto p(s) \cdot p(\{x\} \mid s)$$
 posterior prob on signal prior prob of data given signal

Bayesian posteriors

 Posterior on amplitude: marginalize over the unknown/uncertain parameters φ₀,ψ,cosι

$$p(h_0|\{x\}) = \iiint p(\{x\}|h_0, \varphi_0, \psi, \cos i) x$$
$$x p(\varphi_0) d\varphi_0 p(\psi) d\psi p(\cos i) d\cos i$$

- Upper limit: integrate to the required total probability (confidence level) and read-off the corresponding h₀ upper limit value
- Translate into upper limit on deformation: $h_0 = \frac{4\pi^2 G}{c^4} \frac{I_{zz} \varepsilon f_{gw}^2}{D}$

→ new LIGO results on 5 pulsars

(ApJL 902, L21, 2020)

- J0437–4715, 347.4
 Hz, jus below spindown limit
- J0711–6830, 364.2
 Hz, @70% of spindown limit
- J0737–3039A 88.2
 Hz, @ ≈spindown limit
- Crab (59.2 Hz) @1%
 of spindown limit +
 Vela (22.4 Hz) @7%
 of spindown limit

- would it be significant in Gaussian noise?
- can we exclude a noise disturbance (instrumental/environmental) in the data causing such result?
- Does the result stay significant if we evaluate it against search results from real detector noise?
 - Estimating the background

- would it be significant in Gaussian noise?
- can we exclude a noise disturbance (instrumental/ environmental) in the data causing such result?
- Does the result stay significant if we evaluate it against search results from real detector noise?
 - Estimating the background

- would it be significant in Gaussian noise?
- can we exclude a noise disturbance (instrumental/environmental) in the data causing such result?
- Does the result stay significant if we evaluate it against search results from real detector noise?
 - Estimating the background

The first GW detection

Observation of Gravitational Waves from a Binary Black Hole Merger Phys.Rev.Lett. 116 (2016)

1.4 x 10⁷ time slides corresponding to 608 000 yrs of simulated background.

- For a search for emission from a known pulsar it should be possible to estimate the background:
 - Repeating the same search many times "off-source"
 - <u>near-by frequencies (extensive literature)</u>
 - x different sky positions, Isi et al, arXiv:2010.12612 (2020)

Not so simple for other types of continuous wave searches

Broad searches

Interesting regions (Galactic center)

Interesting objects (e.g. CasA or the Neutron star in ScoX-1)

All-sky

Long coherent observations make for too expensive searches

- like aperture synthesis for radio telescopes
- the baseline in this case is the diameter of the Earth's orbit around the Sun, hence yielding resolutions < 4 arcsec (@100Hz)

Semi-coherent detection methods

Brady et al, PRD 57 (1998), Brady&Creighton, PRD 61 (2000), Dhurandhar et al, PRD 77 (2008), Walsh et al, PRD 94 (2016), O. Piccinni et al, CQG 36 (2019), Dergachev&Papa, PRL 123 (2019)

A cascade of semicoherent searches. At each stage:

- ♦ Tcoh increases
- more noise is rejected
- the SNR of a signal-candidate increases
- the uncertainty in the signal parameters decreases

Hierarchical schemes

Very complex

Search	$T_{ m coh}$	$N_{ m seg}$	δf	$\delta \dot{f}$	$m_{ m sky}$	< µ >	Δf	$\Delta \dot{f}$	$\frac{r_{sky}}{d(8.0 \times 10^{-3})}$	R^a	N_{in}	N_{out}
	\mathbf{hr}		$\mu \mathrm{Hz}$	$10^{-14}~\mathrm{Hz/s}$			$\mu \mathrm{Hz}$	$10^{-14}~\mathrm{Hz/s}$,			
Stage 0	60	64	3.34	32.7479	8.0×10^{-3}	0.5	full range	full range	all-sky	_	7.9×10^{17}	350 145
Stage 1	60	64	3.34	20	5.0×10^{-4}	0.3	850.0	1.2×10^{-10}	5.0	0.75	350145	101 001
Stage 2	126	29	1	2	1.0×10^{-5}	0.09	130.0	2.0×10^{-11}	0.75	1.99	101 001	11915
Stage 3	126	29	0.19	2	1.0×10^{-7}	0.002	10.0	2.0×10^{-12}	0.1	2.2	11915	6128
Stage 4	250	14	0.025	2	2.5×10^{-8}	0.001	0.4	3.2×10^{-13}	0.02	4.3	6128	33
Stage 5	500	7	0.01	1	1.0×10^{-8}	0.001	0.17	1.45×10^{-13}	0.008	6.0	33	21
Stage 6	1 000	2	0.001	0.1	1.0×10^{-9}	0.0002	0.067	6.4×10^{-14}	0.0037	10.0	21	18
Stage 7	1563	2	0.001	0.1	5.0×10^{-10}	0.0001	0.05	8.0×10^{-14}	0.005	15.0	18	8
Stage 8	≈ 5486	1	0.001	0.1	1.0×10^{-10}	0.0007	0.0325	4.25×10^{-14}	0.0025	50.0	8	6

Assessing significance in right out of broad parameter search

- very hard on original search
- emerging strategy: assess significance of a simpler, "verification search"
 - independent data
 - fewer templates

Assessing significance in right out of broad parameter search

- very hard on original search
- emerging strategy: assess significance of a simpler, "verification search"
 - o independent data
 - o fewer templates
 - example: search for signals from neutron star in three young SNRs

Assessing significance in broad parameter searches

- very hard on original search
- assess significance of a simpler verification search
 - independent data
 - o fewer templates
 - example: search for signals from neutron star in three young SNRs

O1 search:

- 2 x 10¹⁷ waveforms searched
- surviving 575

O2.1 search results

- O1 search:
 - 2 x 10¹⁷ waveforms searched
 - surviving 575
- o O2.1 search:
 - surviving 1

O2.1 search results

- O1 search:
 - 2 x 10¹⁷ waveforms
 searched
 - surviving 575
- O2.1 search:
 - surviving 1
- o O2.2 search:
 - not confirmed
- extensive x-ray search on archival data
 - not confirmed
- turned out not to be a gold-plated candidate

Common predicament?

- Some searches have no surviving outliers:
 - Lindblom&Owen, PRD 101, (2020)
 - o Millhouse et al, PRD 102 (2020)
 - o Covas&Sintes, PRL 124 (2020)
 - Steltner et al, to appear in ApJ, arXiv:2009.12260 (2020)
 - o Zhang et al, arXiv:2011.04414 (2020)
- Others produce outliers that survive all automated thresholds and checks but are not completely convincing and need verification on new data
 - o "None of these searches has found clear evidence for a CW signal [..] The remaining 26 sub-threshold candidates, which will be further analyzed in a forthcoming work", Abbott at al, PRD100 (2019)
 - "The search yields a number of low-significance, above threshold candidates [that...] will be followed up in subsequent observing runs.", Middleton et al, PRD 102 (2020)
 - "No significant associated signal is identified [...] A focused gravitational-wave search in O3 data based on the parameters provided here should be easily able to shed light..", Papa et al, ApJ897 (2020)
 - "We list outliers [...] Targeted searches [on O3 data] based on the information presented here [...] should be straightforward.". Dergachev&Papa, PRL125 (2020)

Concluding remarks: known pulsar searches

 in spite of efforts continuous gravitational waves still elude detection

- the assessment of the significance of a signal from a pulsar will be relatively easy
 - Several proven detection schemes exist
 - Well-established collaboration between LVC and pulsar astronomers
 - Machinery is in place for construction of posteriors and model selection

Concluding remarks: broad surveys

- Different situation for broad surveys
- A first detection á la GW150914, appears to me increasingly unlikely
 - more likely is a marginal candidate, with evidence building up over different GW data sets or/and through the identification of an electromagnetic counterpart.
 - o assessment of significance is all but trivial, not mature
 - > assessment of instrumental artefacts, time-critical
 - folding-in EM follow-up results
 - contemplate possibility signal may deviate from assumptions
 - need to push sensitivity of robust methods, with shorter coherence lengths
 - the sensitivity assessment is even trickier

